Semaine n°4 du 07 au 12 octobre 2024

Les nombres complexes (2^{nde} partie)

- Racines carrées d'un nombre complexe non nul. Résolution des équations du second degré. Somme et produit des racines.
- Racines *n*-ièmes de l'unité. Ensemble \mathbb{U}_n . Résolution de $z^n = a \in \mathbb{C}^*$ avec a sous forme trigonométrique.
- Factorisation d'un polynôme P par P(z)=(z-a)Q(z) avec Q polynôme lorsque a est une racine de P (i.e P(a)=0).
- Traduction de l'alignement/orthogonalité au moyen d'affixes. Transformations $z \to e^{i\theta}z, z \to z + b, z \to kz, z \to \bar{z}$.

Généralités sur les fonctions $f:I\subset\mathbb{R}\to\mathbb{R}$.

- Calculs dans R, manipulation d'égalités, d'inégalités. Valeur absolue d'un réel.
- Propriétés usuelles des fonctions : parité, périodicité, monotonie, majorée, minorée, bornée.
- Théorème de la bijection pour une fonction continue et strictement monotone sur un intervalle.
- Dérivation : rappels. Equation d'une tangente. Fonctions de classe C^1 . Dérivée de la réciproque d'une bijection. Inégalité des Accroissements Finis, application à l'étude de suites contractantes.

Exercices

Exercice 1 Soit $n \in \mathbb{N}^*$. Calcul de la somme et du produit des n racines n-ièmes de l'unité.

Exercice 2 Soit un entier $n \ge 2$.

- 1. Déterminer toutes les racines du polynôme $P(X) = X^{n-1} + X^{n-2} + \ldots + X^2 + X + 1 = \sum_{k=0}^{n-1} X^k$.
- 2. Justifier $\prod_{k=1}^{n-1} \left| 1 e^{\frac{2ik\pi}{n}} \right| = n$. En déduire l'égalité $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$.

Exercice 3 Si $x \in]-1, +1[$ et $y \in]-1, +1[$ alors $z = \frac{x+y}{1+xy} \in]-1, +1[$.

Exercice 4 Résoudre $x - 1 = \sqrt{x + 2}$.

Exercice 5 Résoudre $x - 3 \geqslant \sqrt{x^2 - 2x}$.

Exercice 6 Soit $f(x) = \frac{1}{\sin(x)}$: montrer que f réalise une bijection de $[\frac{\pi}{2}, \pi[$ vers un intervalle J à préciser. Montrer que la réciproque $g = f^{-1}$ est dérivable sur $]1, +\infty[$ et calculer g'(t) pour tout $t \in]1, +\infty[$.

Exercice 7 Montrer que l'équation $e^{-x/2} = x$ possède une unique solution, notée ℓ , avec $\ell \in [0, 1]$. Soit la suite u, définie par $u_0 = 0$ et $u_{n+1} = e^{-u_n/2} = f(u_n)$: montrer que $u_n \in [0, 1]$ pour tout $n \in \mathbb{N}$, que f est $\frac{1}{2}$ -lipschitzienne sur [0, 1], que $|u_n - \ell| \leq \left(\frac{1}{2}\right)^n |u_0 - \ell|$ et u converge vers ℓ . Indiquer un procédé permettant d'obtenir une valeur approchée de ℓ à 10^{-3} près.