La calculatrice n'est pas autorisée. Les résultats seront <u>encadrés</u> ou soulignés

PROBLEME 1

Une puce se déplace à chaque unité de temps sur les quatre sommets, nommés A, B, C et D, d'un carré selon le protocole suivant :

- A l'instant 0, la puce se trouve sur le sommet A
- Si à l'instant $n \ge 0$ la puce se trouve sur le sommet A, elle sera à l'instant n+1 sur le sommet A avec la probabilité $\frac{2}{3}$ et sur le sommet C avec la probabilité $\frac{1}{3}$.
- Si à l'instant $n \ge 0$ la puce se trouve sur le sommet B, elle sera à l'instant n+1 sur le sommet A avec la probabilité $\frac{1}{2}$ et sur le sommet C avec la probabilité $\frac{1}{2}$.
- Si à l'instant $n \ge 0$ la puce se trouve sur le sommet C, elle sera à l'instant n+1 sur le sommet B avec la probabilité $\frac{1}{2}$ et sur le sommet D avec la probabilité $\frac{1}{2}$.
- Si à l'instant $n \ge 0$ la puce se trouve sur le sommet D, elle sera à l'instant n+1 sur le sommet B avec la probabilité $\frac{1}{3}$ et sur le sommet D avec la probabilité $\frac{2}{3}$.

Pour tout entier naturel n, On note les événements

- $A_n =$ « la puce est sur le sommet A à l'instant n »
- $B_n =$ « la puce est sur le sommet B à l'instant n »
- $C_n =$ « la puce est sur le sommet C à l'instant n »
- $D_n =$ « la puce est sur le sommet D à l'instant n »
- 1. (a) Préciser les valeurs de $\mathbb{P}(A_0)$, $\mathbb{P}(B_0)$, $\mathbb{P}(C_0)$ et $\mathbb{P}(D_0)$. Justifier.
 - (b) Rappeler l'énoncé de la formule des probabilités totales (hypothèses comprises).
 - (c) Montrer que, pour tout entier $n \ge 0$, on a :

$$\mathbb{P}(A_{n+1}) = \frac{2}{3}\mathbb{P}(A_n) + \frac{1}{2}\mathbb{P}(B_n).$$

- (d) Exprimer de même, pour tout entier $n \ge 0$, $\mathbb{P}(B_{n+1})$, $\mathbb{P}(C_{n+1})$ et $\mathbb{P}(D_{n+1})$ en fonction de $\mathbb{P}(A_n)$, $\mathbb{P}(B_n)$, $\mathbb{P}(C_n)$ et $\mathbb{P}(D_n)$.
- (e) Que vaut, pour tout n de \mathbb{N} , la somme $\mathbb{P}(A_n) + \mathbb{P}(B_n) + \mathbb{P}(C_n) + \mathbb{P}(D_n)$?
- 2. On pose $U_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$, puis, pour tout $n \in \mathbb{N}$, $U_n = \begin{pmatrix} \mathbb{P}(A_n) \\ \mathbb{P}(B_n) \\ \mathbb{P}(C_n) \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.

On pose également :

$$R = \frac{1}{6} \begin{pmatrix} 4 & 3 & 0 \\ -2 & -2 & 1 \\ 2 & 3 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}) \quad \text{ et } \quad V = \frac{1}{3} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$$

Quelle relation existe-t-il entre U_{n+1} , U_n , R et V?

- 3. (a) Déterminer une matrice $L \in \mathcal{M}_{3,1}(\mathbb{R})$ vérifiant L = RL + V.
 - (b) Etablir la relation suivante, pour tout entier $n \in \mathbb{N} : U_n = \mathbb{R}^n(U_0 L) + L$.
- 4. On pose M=6R et on appelle f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice M. La base canonique de \mathbb{R}^3 sera notée $\mathcal{C}=(\vec{e_1},\vec{e_2},\vec{e_3})$, Id représente l'application identité de \mathbb{R}^3 et I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$.

- (a) Pour tout $\lambda \in \mathbb{R}$, on définit $Q_M(\lambda) = \det(M \lambda I_3)$. Montrer que Q est un polynôme de degré trois, possédant trois racines réelles, à déterminer, λ_1, λ_2 et λ_3 avec $\lambda_1 < \lambda_2 < \lambda_3$.
- (b) Pour tout $k \in \{1, 2, 3\}$, calculer le rang de la matrice $M \lambda_k I_3$, puis montrer que le noyau $E_{\lambda_k} = \text{Ker}(f \lambda_k \text{Id})$ est une droite vectorielle dont on précisera un vecteur directeur \vec{b}_k : on choisira \vec{b}_k composé uniquement de valeurs entières avec sa première composante la plus petite possible à choisir dans $\{1, 3\}$.
- (c) Prouver que la famille $\mathcal{B} = (\vec{b}_1, \vec{b}_2, \vec{b}_3)$ est une base de \mathbb{R}^3 et préciser la matrice Δ de f sur cette base \mathcal{B} .
- (d) Quelle relation existe t-il entre les matrices M et Δ ?
- 5. Indiquer une méthode de calcul de \mathbb{R}^n (dont on ne demande pas une expression détaillée).
- 6. En déduire la limite de la colonne U_n (i.e de chacune des composantes de la colonne U_n) lorsque n tend vers $+\infty$, puis $\lim_{n\to+\infty} \mathbb{P}(D_n)$.
 - Si l'on décide d'écraser cette puce, où vaut-il mieux frapper?

PROBLEME 2

I - Questions préliminaires

On considère la fonction f définie par

$$f: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f(t) = \frac{1}{1+t^2} \end{array} \right|$$

- 1. Effectuer une étude rapide et tracer l'allure de la courbe représentative de la fonction f.
- 2. Justifier que le segment [0,1] est stable par f.
- 3. Etudier les variations de la fonction dérivée f' sur [0,1].
- 4. Déterminer toutes les primitives de f.
- 5. Donner les développements limités d'ordre 5 en 0 des fonctions f et arctan.

II - Etude des solutions d'une équation différentielle

On considère, sur l'intervalle $I=]0,+\infty[$, l'équation différentielle suivante :

$$(x, y') = (x, y') + 2y = \frac{x}{1+x^2}$$
 (E)

- 1. Déterminer toutes les solutions sur I de cette équation différentielle (E).
- 2. Prouver que, parmi toutes ces solutions, il en existe une et une seule qui soit prolongeable par continuité en 0. On appelle g cette solution unique.
- 3. Cette fonction g est-elle dérivable en 0 ? Si oui, donner la valeur de g'(0) et tracer l'allure locale de cette fonction au voisinage de 0^+ (tangente éventuelle en 0 et position par rapport à cette tangente).

III - Une suite récurrente

- 1. Prouver que l'équation $\langle x^3 + x 1 = 0 \rangle$ possède une et une seule solution réelle, notée α . Prouver $0 < \alpha < 1$.
- 2. (a) Vérifier que α est un point fixe de la fonction f.
 - (b) Rappeler l'énoncé du théorème de l'*inégalité des accroissements finis* (hypothèses et conclusion).
 - (c) Montrer que f est C-lipschitzienne sur l'intervalle [0,1] où C est une constante vérifiant 0 < C < 1.
- 3. On définit la suite $u = (u_n)_{n \ge 0}$ par :

$$u_0 = 0$$
 et, pour tout entier $n \ge 0$, $u_{n+1} = f(u_n) = \frac{1}{1 + u_n^2}$.

- (a) Montrer: pour tout entier $n \ge 0$, $u_n \in [0, 1]$.
- (b) Montrer: pour tout entier $n \ge 0$,

$$|u_n - \alpha| \leqslant C^n$$
.

- (c) Que peut-on conclure du résultat précédent?
- 4. A l'aide de ce qui précède, indiquer une méthode permettant d'obtenir une valeur approchée de α à 10^{-3} près.

IV - Dérivées successives

- 1. Justifier que la fonction f est de classe C^{∞} sur \mathbb{R} .
- 2. Prouver que, pour tout $n \in \mathbb{N}$, il existe un polynôme P_n à coefficients réels tel que

$$\forall x \in \mathbb{R}, f^{(n)}(x) = \frac{P_n(x)}{(1+x^2)^{n+1}}.$$

Au passage, on aura établi une relation entre les polynômes P_{n+1} , P'_n et P_n .

- 3. Question de cours : rappeler l'énoncé (complet, hypothèses comprises) du théorème établissant la formule de Leibniz.
- 4. (a) Justifier: $\forall x \in \mathbb{R}, (1+x^2)f(x) = 1.$

En déduire, pour tout $n \ge 2$ et pour tout $x \in \mathbb{R}$:

$$P_n(x) + 2nxP_{n-1}(x) + n(n-1)(1+x^2)P_{n-2}(x) = 0.$$

- (b) <u>Une application</u>: prouver que, pour tout $n \ge 0$, les polynômes P_n et P_{n+1} n'ont aucune racine réelle commune.
- 5. Dans cette question, on détermine les polynômes P_n par une méthode différente.
 - (a) Déterminer des constantes λ et μ dans $\mathbb C$ telles que :

pour tout
$$x \in \mathbb{R}$$
, $f(x) = \frac{1}{1+x^2} = \frac{\lambda}{x-i} + \frac{\mu}{x+i}$.

(b) Etablic alors, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$f^{(n)}(x) = \frac{(-1)^n n!}{2i} \left(\frac{(x+i)^{n+1} - (x-i)^{n+1}}{(x^2+1)^{n+1}} \right).$$

- (c) En déduire une expression explicite de $P_n(x)$.
- (d) Montrer que, pour tout $n \in \mathbb{N}^*$, P_n possède exactement n racines réelles distinctes, qui sont les

$$\cot \left(\frac{k\pi}{n+1}\right) \text{ avec } 1 \leqslant k \leqslant n.$$

V - Une équation fonctionnelle

On cherche les fonctions h solutions du problème (\mathcal{P})

 $\forall h : \mathbb{R} \to \mathbb{R}$, fonction **dérivable** sur \mathbb{R} et $\forall (x,y) \in \mathbb{R}^2$, $h(x+y)(1-h(x)h(y)) = h(x) + h(y) \gg 1$.

- 1. Dans cette question, on suppose que h est une solution de (\mathcal{P}) .
 - (a) Montrer : h(0) = 0.
 - (b) Montrer: $\forall x \in \mathbb{R}, \frac{h'(x)}{1 + h^2(x)} = h'(0).$
 - (c) Montrer qu'il existe deux constantes a et b telles que : $\forall x \in \mathbb{R}$, $\arctan(h(x)) = ax + b$.
 - (d) En déduire que h est constante.
- 2. Conclure.

VI - Calcul de la somme d'une série

Soit la suite $S = (S_n)_{n \geqslant 0}$ définie par

$$\forall n \geqslant 0, \ S_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots + \frac{(-1)^n}{2n+1}.$$

1. (a) On définit deux nouvelles suites $p = (p_n)_{n \ge 0}$ et $i = (i_n)_{n \ge 0}$ par

pour tout
$$n \geqslant 0$$
, $p_n = S_{2n}$ et $i_n = S_{2n+1}$.

Montrer que $p = (p_n)_{n \ge 0}$ et $i = (i_n)_{n \ge 0}$ sont des suites adjacentes.

- (b) Montrer que la suite S converge. On note L sa limite.
- (c) Indiquer une méthode permettant d'obtenir une valeur approchée de L à 10^{-2} près.
- 2. Soit, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$,

$$D_n(x) = \sum_{k=0}^n (-1)^k x^{2k} = 1 - x^2 + x^4 - x^6 + \dots + (-1)^n x^{2n}.$$

Exprimer $D_n(x)$ à l'aide de f(x).

3. En calculant $\int_0^1 D_n(x) dx$ de deux façons, montrer :

pour
$$n \geqslant 0$$
, $\left| S_n - \frac{\pi}{4} \right| \leqslant \frac{1}{2n+3}$.

Conclusion?