La calculatrice n'est pas autorisée. Les résultats seront <u>encadrés</u> ou soulignés

Exercice 1 COURS et APPLICATIONS DU COURS - Questions largement indépendantes

- 1. Compléter (pas de preuve exigée) sur la feuille jointe à ce sujet (à glisser dans votre copie) :
 - (a) $\forall x \in \ldots$, Arctan'(x) =
 - (b) $\forall x \in \dots$, $\operatorname{Arccos}'(x) = \dots$
 - (c) $\forall x \in \dots$, $Arcsin'(x) = \dots$
 - (d) $(Arcsin(sin(t)) = t) \Leftrightarrow (t \in)$
 - (e) $(\operatorname{Arccos}(\cos(t)) = t) \Leftrightarrow (t \in \dots)$
 - (f) $(Arctan(tan(t)) = t) \Leftrightarrow (t \in)$
 - (g) $\forall x \in \dots$, $\operatorname{Arccos}(x) + \operatorname{Arcsin}(x) = \dots$
 - (h) Sous réserve d'existence : exprimer en fonction de $\tan(a)$ et de $\tan(b)$, $\tan(a+b) = \dots \qquad \text{et} \quad \tan(a-b) = \dots \qquad \text{et} \quad \tan(2a) = \dots \dots$
 - (i) $\forall x \in ..., \sin(\operatorname{Arccos}(x)) = \cos(\operatorname{Arcsin}(x)) = ...$
 - (i) Donner les valeurs exactes de :

 $\operatorname{Arctan}(-1) = \dots, \operatorname{Arctan}\left(\frac{1}{\sqrt{3}}\right) = \dots, \operatorname{Arcsin}\left(\frac{\sqrt{3}}{2}\right) = \dots, \operatorname{Arccos}\left(-\frac{1}{2}\right) = \dots$

- 2. Donner les développements limités d'ordre n lorsque $x \to 0$ (notés $\mathrm{DL}_n(0)$) des quantités suivantes (où α désigne une constante réelle) :
 - (a) $DL_3(0)$ de

$$\tan(x)$$
 et $(1+x)^{\alpha}$ et $\sqrt{1+x}$.

(b) $DL_{5}(0)$ de

$$\operatorname{sh}(x)$$
 et $\operatorname{ch}(x)$ et $\operatorname{sin}(x)$ et $\operatorname{cos}(x)$ et $\operatorname{ln}(1+x)$ et $\frac{1}{1+x}$ et $\operatorname{arctan}(x)$ et e^x .

Les réponses doivent être écrites sur la feuille jointe à ce sujet (ne pas oublier de la glisser dans votre copie).

- 3. On pose $A = \operatorname{Arccos}\left(\frac{4}{5}\right)$ et $B = 2\operatorname{Arcsin}\left(\frac{1}{\sqrt{10}}\right)$. Calculer $\cos(A)$ et $\cos(B)$, puis comparer A et B.
- 4. Dans cette question de vérification des techniques de calculs, il n'est pas demandé de justifier l'existence des intégrales.
 - (a) Calculer l'intégrale $I = \int_3^4 \frac{1}{x^2 7x + 10} dx$.

- (b) Calculer l'intégrale $J = \int_{-1}^{2} \frac{1}{x^2 + 2x + 5} dx$.
- (c) Calculer l'intégrale $K = \int_0^4 e^{\sqrt{x}} dx$ à l'aide du changement de variable $t = \sqrt{x}$.
- 5. Pour tout paramètre $k \in \mathbb{R}$, on définit la fonction f_k par

$$f_k(x) = \frac{1}{1-x} + ke^{-2x}.$$

On désigne par C_k sa courbe représentative dans un repère orthonormal.

- (a) Déterminer le développement limité d'ordre 3, en x = 0 de $f_k(x)$.
- (b) Donner l'équation de la tangente T_k à C_k en x=0. Montrer que toutes les tangentes T_k sont concourantes (avec $k \in \mathbb{R}$) en un point à déterminer.
- (c) Existe-t-il des courbes \mathcal{C}_k qui possèdent un point d'inflexion en x=0? Si oui, les déterminer et tracer l'allure locale de ces courbes et de leur tangente en 0.
- (d) On définit la fonction φ_k par $\varphi_k(x) = \frac{f_k(x)}{r}$. Montrer qu'il existe une seule valeur de k permettant de prolonger φ_k par continuité en 0 : on appelle ψ cette fonction φ_k . Justifier que la fonction ψ est dérivable en 0, donner la valeur de $\psi'(0)$ et tracer l'allure de la courbe représentative de ψ avec sa tangente au voisinage de 0.
- 6. On définit la fonction th par $th(x) = \frac{sh(x)}{ch(x)}$.
 - (a) Justifier que la fonction the st définie et dérivable sur \mathbb{R} , et calculer sa dérivée th'. On donnera deux expressions de th': une uniquement en fonction de th, l'autre en fonction de ch.
 - (b) Montrer, pour tout $x \in \mathbb{R}$: $th(x) \in]-1, +1[$.
 - (c) On pose $f(x) = \arccos(\operatorname{th}(x)) + \arctan(\operatorname{sh}(x))$. Dériver f et en déduire une expression simplifiée pour f.

Exercice 2

On pose

$$u_n = \int_1^e \frac{\ln^n(x)}{x^2} dx$$
 où $\ln^n(x) = (\ln(x))^n$ et n entier naturel.

 $u_n = \int_1^e \frac{\ln^n(x)}{x^2} dx \qquad \text{où } \ln^n(x) = (\ln(x))^n \text{ et } n \text{ entier naturel.}$ On rappelle : 0! = 1 et, pour $n \geqslant 1$, $n! = \prod_{k=1}^n k = 1 \times 2 \times \ldots \times n$.

1. Justifier que pour tout $n \in \mathbb{N}$, u_n existe et calculer u_0 .

- PCSI₁-PCSI₂
 - 2. A l'aide d'une intégration par parties donner une relation de récurrence entre u_{n+1} et u_n . En déduire u_1 et u_2 .
 - 3. A l'aide du changement de variable $t = \ln(x)$, montrer que $u_n = \int_a^b t^n g(t) dt$ où les constantes a, b et la fonction g sont à préciser.
 - 4. En déduire :

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant \frac{1}{n+1}.$$

Quelle est la limite de u_n lorsque n tend vers $+\infty$?

- 5. Montrer ¹ qu'il existe une suite d'**entiers naturels** $(b_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, on a $u_n=n!-\frac{b_n}{e}$. Préciser b_0,b_1,b_2 ainsi qu'une relation de récurrence entre b_{n+1} et b_n .
- 6. Déterminer les valeurs de $\lim_{n\to+\infty} (b_n)$ puis $\lim_{n\to+\infty} \left(\frac{n!}{b_n}\right)$.
- 7. Montrer que, pour tout $n \in \mathbb{N}$, $n! \leq b_n$ et en déduire un encadrement de $\left(\frac{n!}{b_n} \frac{1}{e}\right)$ faisant intervenir une factorielle.
- 8. On désire calculer $\frac{1}{e}$ à 10^{-3} près.
 - (a) A l'aide de ce qui précède, donner un rationnel $r = \frac{p}{q}$ tel que $\left| \frac{p}{q} \frac{1}{e} \right| \le 10^{-3}$.
 - (b) Montrer que, pour tout $n \in \mathbb{N}$: $b_n = n! \sum_{k=0}^n \frac{1}{k!}$. En déduire, si $n \ge 1$: $b_n \ge 2 \times n!$.
 - (c) Peut-on améliorer la réponse à la question (8a)?
- 9. On rappelle la définition de la **partie entière** $\lfloor x \rfloor$ d'un réel x: il s'agit de l'unique entier relatif N vérifiant $N \leqslant x < N+1$. Autrement dit, pour $x \in \mathbb{R}$, on a la caractérisation :

$$[(N = \lfloor x \rfloor) \Leftrightarrow (N \in \mathbb{Z} \text{ et } N \leqslant x < N+1)]$$

Montrer que, pour $n \ge 2$, on a : $b_n = |en!|$.

Cette égalité est-elle encore vérifiée pour n = 1? n = 0?

Exercice 3

On fixe un réel $a \in]-1,+1[$.

1. Montrer, pour tout $t \in \mathbb{R}$,

$$a^2 - 2a\cos(t) + 1 > 0.$$

1. On pourra poser la proposition P(n) : «il existe un entier naturel b_n tel que $u_n = n! - \frac{b_n}{e}$ ».

2. On définit la fonction

$$f_a: \left| \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f_a(t) = \ln \left(a^2 - 2a \cos(t) + 1 \right) \end{array} \right|$$

et l'intégrale

$$I(a) = \int_0^{2\pi} f_a(t) dt = \int_0^{2\pi} \ln (a^2 - 2a\cos(t) + 1) dt.$$

- (a) Justifier l'existence de la fonction f_a et de l'intégrale I(a).
- (b) Montrer, à l'aide du changement de variable $u = t + \pi$:

$$\int_{\pi}^{2\pi} f_a(t) dt = \int_{0}^{\pi} f_{-a}(t) dt.$$

(c) Montrer, pour tout $t \in \mathbb{R}$,

$$f_a(t) + f_{-a}(t) = f_{a^2}(2t).$$

(d) En déduire:

$$I(a) = \int_0^{\pi} f_{a^2}(2t) dt.$$

- 3. (a) Comparer I(a) et $I(a^2)$.
 - (b) Pour tout $p \in \mathbb{N}$, exprimer I(a) en fonction de $I(a^{2^p})$.

4. On suppose $a \in [0, 1[$ dans cette question

(a) Montrer, pour tout $t \in \mathbb{R}$,

$$2\ln(1-a) \leqslant f_a(t) \leqslant 2\ln(1+a).$$

- (b) En déduire un encadrement de I(a).
- (c) Montrer, pour tout $p \in \mathbb{N}$,

$$\frac{4\pi \ln(1 - a^{2^p})}{2^p} \leqslant I(a) \leqslant \frac{4\pi \ln(1 + a^{2^p})}{2^p}.$$

- (d) En déduire I(a) = 0.
- 5. Que vaut I(a) si $a \in]-1,0[?$